

Electrotechnology **3rd EDITION**

Jeffery Hampson

Copyright © Pearson Australia (a division of Pearson Australia Group Pty Ltd) 2014

Pearson Australia Unit 4, Level 3 14 Aquatic Drive Frenchs Forest NSW 2086

www.pearson.com.au

The *Copyright Act* 1968 of Australia allows a maximum of one chapter or 10% of this book, whichever is the greater, to be copied by any educational institution for its educational purposes provided that that educational institution (or the body that administers it) has given a remuneration notice to Copyright Agency Limited (CAL) under the Act. For details of the CAL licence for educational institutions contact: Copyright Agency Limited, telephone: (02) 9394 7600, email: info@copyright.com.au

All rights reserved. Except under the conditions described in the Copyright Act 1968 of Australia and subsequent amendments, no part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copyright owner.

Senior Acquisitions Editor: Andrew Brock Senior Project Editor: Bernadette Chang Development Editor: Ailin Bezzo Editorial Coordinator: Georgia Eliades Production Coordinator: Caroline Stewart Copy Editor: Jennifer Coombs Proofreader: Michael Wyatt Copyright and Pictures Editor: Kim Morgan Indexer: Karen Gillen Cover and internal design by Pier Vido Typeset by Aptara®, Inc.

Printed in China

1 2 3 4 5 18 17 16 15 14

National Library of Australia Cataloguing-in-Publication Data

Author: Hampson, Jeffery, author. Title: Electrotechnology practice / Jeffery Hampson. Edition: 3rd edition. ISBN: 9781486000623 (Paperback) Series: Electrical skills series. Notes: Includes index. Subjects: Electrical engineering—Textbooks. Dewey Number: 621.3

Every effort has been made to trace and acknowledge copyright. However, should any infringement have occurred, the publishers tender their apologies and invite copyright owners to contact them.

PEARSON

BRIEF CONTENTS

Preface	xvi
Acknowledgements	xvii
Section 1 Work health and safety	1
Section 2 Document and apply measures to control WH&S risks associated with electrotechnology work	57
Section 3 Fabricate, assemble and dismantle utilities industry components	90
Section 4 Fixing and support devices and techniques	133
Section 5 Drawings, diagrams and schedules	154
Section 6 Develop and connect electrical control circuits	195
Section 7 Wiring systems types, applications and terminations	266
Section 8 Installation of wiring systems	348
Section 9 Electrical installation—cable selection and coordination	393
Section 10 Electrical installations—arrangement, control and protection	487
Section 11 Electrical apparatus and existing circuits—verification and testing	536
Section 12 Introduction to regulations, compliance standards and codes	561
Section 13 Electrical heating	569
Section 14 Lighting	595
Section 15 Batteries	646
Answers to the exercises Index	670 679

FULL CONTENTS

Preface Acknowledgements	xvi xvii
Section 1 Work health and safety	1
 1.1 Work health and safety fundamentals 1.1.1 Responsibilities, rights and obligations 1.1.2 Health and safety committees 1.1.3 Safety inspectors 1.1.4 Safety observers 	2 3 3 3 3
1.1.5 Housekeeping 1.1.6 Personal protective equipment	4 4
1.2 Work environment 1.2.1 Worksite 1.2.2 Induction 1.2.3 The work environment 1.2.4 Standard work procedure	5 5 5 6 6
 1.3 Work environment safety signs 1.3.1 Prohibition signs 1.3.2 Mandatory signs 1.3.3 Restriction signs 1.3.4 Danger signs 1.3.5 Warning signs 1.3.6 Emergency information signs 	7 8 8 8 8 8 8 8 8 8
1.3.7 Fire signs	8 9
 1.5 Workplace emergencies 1.6 Manual handling 1.6.1 Manual handling injuries 1.6.2 Procedures for lifting 	10 11 11 12
 1.7 Chemicals in the workplace 1.8 Material safety data sheets 1.8.1 How to translate a material safety data sheet (MSDS) 	13 15 15
1.9 Storage procedures 1.9.1 Labelling	16 16
 1.10 Working at heights 1.10.1 Ladder hazards 1.10.2 Ladder types 1.10.3 Step ladders 1.10.4 Single-length and extension ladders 1.10.5 Scaffolds 1.10.6 Elevated work platforms 	16 16 17 17 18 19 19
1.11 Confined spaces 1.11.1 Portable gas detectors	20 21
1.12 Physical and psychological hazards1.12.1 Industrial noise1.12.2 Personal protectors	22 22 22

1.12.3 Vibration	22
1.12.4 Ultraviolet radiation	23
1.12.5 Overuse syndrome	23
1.12.6 Stress	24
1.12.7 Drugs and alcohol	24
1.13 Working with electricity	25
1.13.1 The physiological effects of current	25
1.13.2 Body resistance	25
1.13.3 Physiological sensations of current	<u>-</u> 0 26
1 13 4 Effect of voltage	26
1.13.5 Burns	26
1.13.6 The fundamental principles	26
1.13.7 Causes of electrical accidents	27
1.13.8 Permit-to-work system	27
1 13 9 Clearance certificates	27
1 13 10 Isolation permissions	27
1 14 Protoctivo moscuros	21
	20
1.14.1 FUSE	20
1.14.2 Cilcuit Dieakei	20
1.14.3 Editilling	28
1.14.4 Separated extra-low voltage (SELV)	29
1.14.5 Residual current device (RCD)	29
1.14.6 Isolation of electrical supply	29
1.14.7 Low-voltage systems	29
1.15 Common electrical hazards	30
1.15.1 Electric shock	30
1.15.2 Arcing	30
1.15.3 Toxic gases	30
1.15.4 Controlling low-voltage hazards	30
1.15.5 Extra-low voltage	30
1.15.6 High currents	30
1.15.7 High-voltage hazards	31
1.15.8 Electrical safety audit checklist	31
1.16 Rescue from a live situation	32
1.16.1 Low-voltage rescue kit	32
1.16.2 Rescue from low-voltage equipment	32
1.17 Life support	33
1.17.1 First aid	33
1.17.2 The priority action plan	33
1.17.3 Emergency procedure at an accident	33
1 18 Legal and ethical issues	34
1 18 1 Duty of care	34
1 18 2 Reasonably prudent individual	34
1 18 3 Good Samaritan	34
1.10.5 Good Sumaritan	25
1.17 FIISt diu IIIOIIIdtiofi (CPK)	35
1.19.1 Casually examination	35
1.19.2 Unecking vital signs	35
1.19.3 Kescue preatning	35
1.19.4 Unest compressions	35
1.19.5 Level of consciousness	36
1.19.6 Ulinical shock	36

Appendix Material safety data sheet	38
1.19.10 Burns	37
1.19.9 Broken bones	37
1.19.8 Bleeding	36
1.19.7 Treatment for shock	36

Section 2

Document and apply measures to control WH&S risks associated with electrotechnology work 2.1 Risk management

2.1.1 Process for conducting a risk assessment	58
2.1.2 Risk analysis	58
2.1.3 Risk action	58
2.1.4 Course of action plan	58
2.1.5 Record keeping	59
2.1.6 Promotion of principles and	
responsibilities	60
2.1.7 Risk assessment for electrical work	60
2.2 Hazard identification	61
2.2.1 Recording hazards	61
2.2.2 Specific hazards identification	62
2.2.3 Non-electrical hazards	62
2.2.4 Hazards for electricians when	
working with machines	63
2.3 Control measures	64
2.3.1 Hierarchy of control	64
2.4 Low-voltage systems	65
2.4.1 Low-voltage installations or	
systems hazards	65
2.5 Coherent optical hazards	66
2.5.1 Safety Class 2M: visible low-power lasers	67
2.6 Harmful dusts and airborne	
contaminant hazards	68
2.6.1 Asbestos	68
2.6.2 Glass and rock wool	68
2.6.3 Fibreglass	69
2.6.4 Silica dust	69
2.6.5 Wood dust	69
2.6.6 Legionella	69
2.6.7 Bird droppings	69
2.6.8 Optical fibre hazards	69
2.7 Lockout, isolation and tagging	70
2.7.1 Tags	70
2.8 Step and touch potential	72
2.8.1 Step potential	72
2.8.2 Touch potential	73
2.8.3 Hazardous contact	73
2.8.4 Protection measures	74
2.8.5 High-voltage procedures	76
2.8.6 Safety clearances	76

2.9 Testing equipment	77
2.9.1 Installation categories	77
2.9.2 IP ratings	78
2.10 Installation safety	80
2.10.1 Effects of current on a person	80
2.10.2 Pulsating dc fault currents	81
2.10.3 Hazards of electric arc flashes	82
2.11 Construction site periodic inspection	l
and test	85
2.11.1 Possible format for testing at	
construction sites	86
Trial exam	88

Section 3 Fabricate, assemble and

dismantle utilities industry components

3.1 Mechanical drawing	91
3.1.1 Drawing standards	91
3.1.2 Title block information	92
3.1.3 Line types	93
3.1.4 Dimensions	94
3.1.5 Scales	96
3.1.6 Machining symbols	97
3.1.7 Abbreviations	98
3.1.8 Types of drawing representations	98
3.1.9 Sketching	103
3.2 Measuring and marking	105
3.2.1 Marking-out tools	105
3.3 High accuracy measurement (low tolerance	
measurement)	106
3.3.1 Micrometers	106
3.3.2 Verniers	107
3.4 Holding and cutting	108
3.4.1 Hacksaw	108
3.4.2 Power hacksaw	109
3.4.3 Cold chisel	110
3.4.4 Tin snips	110
3.4.5 Bolt cutter	110
3.4.6 Bench vice	111
3.4.7 The machine vice	111
3.4.8 Files	111
3.4.9 File handle	112
3.4.10 File card	112
3.4.11 Abrasive paper/cloth	113
3.4.12 Safety procedures	113
3.5 Sheet metal work	113
3.5.1 Making mitres	114
3.6 Drills and drilling	115
3 6 1 Centre nunch	115
3.6.2 Drill bits	115
3.6.3 Hole saw	116

3.7 Tapping and threading	117
3.7.1 How to measure and identify a thread	117
3.7.2 Taps	117
3.7.3 Tap wrench	118
3.7.4 Stock and dies	118
3.7.5 Extractors	119
3.8 Power tools	119
3.8.1 Hammer drill	119
3.8.2 Screwdriver	119
3.8.3 Heat guns	120
3.8.4 Angle grinder	120
3.8.5 Nibblers	120
3.8.6 Pedestal drill press	120
3.8.7 Bench grinder	121
3.9 General hand tools	122
3.9.1 Screwdrivers	122
3.9.2 Combination pliers	123
3.9.3 Diagonal cutters	123
3.9.4 Long nose pliers	123
3.9.5 Wire strippers	123
3.9.6 Cable cutters	124
3.9.7 Crimp tool	124
3.9.8 Spanners	124
3.9.9 Multigrips	125
3.9.10 Vice grips	125
3.9.11 Allan keys	125
3.9.12 Pullers	125
3.9.13 Hammers	126
3.9.14 Principles of tool use	126
3.9.15 Dismantling and assembly techniques	126
3.10 Joining techniques	127
3.10.1 Soldering	127
3.10.2 Welding	129
Trial exam	131

Section 4 Fixing and support devices and techniques

4.1 Fasteners and fixings	134
4.1.1 Choosing attachment devices	134
4.1.2 Nails	134
4.1.3 Masonry screws	134
4.1.4 Plastic expansion plugs	135
4.1.5 Masonry expansion anchors	135
4.1.6 Sleeve anchors	135
4.1.7 Wedge anchors	136
4.1.8 Chemical anchors	136
4.2 Stud wall attachment devices	137
4.2.1 Fixings for plasterboard	137
4.2.2 Threaded plasterboard anchor	137
4.3 Powder-actuated fasteners	138
4.3.1 Expanding-gas-operated setting tool	138

4.4 Threaded fasteners	139
4.4.1 Screws	139
4.4.2 Bolts	140
4.5 Washers	142
4.6 Keys	142
4.6.1 Square key	142
4.6.2 Woodruff key	143
4.6.3 Pratt and Whitney key	143
4.6.4 Gib head key	143
4.7 Non-threaded fastening devices	143
4.7.1 Dowel pins	143
4.7.2 Cotter pins	143
4.7.3 Retaining rings	143
4.8 Fixings	144
4.8.1 Load rating of fixings	144
4.8.2 Factors affecting the selection of fixings	145
4.8.3 Applications for fixings	145
4.8.4 Suggested fixings for an installation	146
4.8.5 Cable ties	147
4.9 Fixing adhesives and tapes	148
4.9.1 Double-sided adhesive tape	148
4.9.2 Epoxy adhesives	149
4.9.3 UV curable adhesives	150
4.9.4 Hot-melt adhesives	150
4.9.5 Anaerobic adhesives	150
4.9.6 Safety with adhesives	151
4.9.7 Self-amalgamating tape	151
4.10 Environmental and heritage awareness	152
Trial exam	153

Section 5

Drawings, diagrams and schedules

5.1 Architectural drawings	155
5.1.1 Building structures	155
5.1.2 Location plan	155
5.1.3 Lot map	157
5.1.4 Soil report	157
5.1.5 Site plan	158
5.1.6 Setting out	159
5.1.7 Footings	159
5.1.8 Brick veneer	160
5.1.9 Cavity brick	161
5.1.10 Timber frame with external linings	161
5.1.11 Timber wall frame	162
5.1.12 Timber floors	162
5.1.13 Roof types	163
5.1.14 Roof truss	163
5.1.15 Eaves	164
5.1.16 Stages of construction	164
5.1.17 Standard floor plan for domestic	
buildings	165

5.1.18 Working drawings for domestic	
building work	166
5.1.19 Floor plan	166
5.2 Electrical symbols, drawings scales and	
electrical schedules	167
5.2.1 Symbols	167
5.2.2 Australian symbols—power	168
5.2.3 Drawing scales	168
5.2.4 Installation diagram	170
5.2.5 Electrical specification schedule	170
5.2.6 Telecommunication and audio-visual	172
5.3 Electrical drawings	173
5.3.1 Block diagrams	173
5.3.2 Routes of underground feeder cables	174
5.3.3 Line diagrams	176
5.3.4 Circuit diagrams	178
5.3.5 Wiring diagrams	179
5.3.6 Cable schedule	179
5.4 Lighting circuits	181
5.4.1 Circuit wiring—TPS cable	181
5.4.2 One-way lighting circuits	182
5.4.3 Two-way lighting circuits	183
5.4.4 Two-way plus intermediate lighting circuits	184
5.4.5 Switch chart	185
5.4.6 Master on switching	185
5.4.7 Master off for two-way switching	185
5.4.8 Master off for commercial premises	185
5.4.9 Requirements for luminaires and light	
switches	185
5.4.10 Recessed luminaires	186
5.4.11 Lighting track	186
5.4.12 Festoon lighting	188
5.4.13 Converting from a circuit diagram	
to a wiring diagram	189
5.4.14 Additional types of working	
electrical drawings	189
Trial exam	194

Section 6

Develop and connect electrical control circuits

6.1 Relays	196
6.1.1 Circuit symbols	196
6.1.2 Reed relays	196
6.1.3 Electromechanical relays	197
6.1.4 Relay specifications	199
6.1.5 Labelling wires and terminal (numbering	
systems)	199
6.1.6 Solid-state relay	200
6.1.7 Relay testing	200
6.2 Relay circuits and drawing conventions	201
6.2.1 Reference designations	203
6.2.2 Line number reference	204

6.2.3 Line number cross reference	204
6.2.4 Conductor reference numbers	204
6.2.5 Pushbuttons	204
6.2.6 Indicator lamps	207
6 3 Remote ston-start control and	
electrical interlocking	208
6.3.1 Stop-start circuits	200
6.3.2 Remote ston_start circuit	200
6.3.3 Emergency ston	203
6.3.4 Two-wire control	210
6.3.5 Make_before_break	210
6.3.6 Brook before make	211
6.3.7 Limit switches	211
6.3.8 Tomporature switch	211
6.3.0 Prossure switch	212
6.3.10 Dead man controls	212
6.3.11 Electrical interlocking	212
6.3.12 Mochanical interlocking	213
	213
6.4 Time delay relays	214
6.5 Circuits using contactors	216
6.5.1 Auxiliary contact devices	218
6.5.2 Coil drive device	218
6.5.3 Coil surge suppression device	219
6.5.4 Contactor relay	219
6.5.5 Direct current coils	219
6.5.6 Utilisation categories	219
6.5.7 Contact tips	220
6.5.8 Thermal overload	221
6.5.9 Main circuit suppression device	221
6.5.10 Operation counter	221
6.5.11 Mechanical latching relays	222
6.6 Jogging and interlocking	223
6.6.1 Relay jogging control	223
6.6.2 Two-hand control	223
6.7 Control devices	22/
6.7.1 Arc suppression devices	224
6.7.2 Transducars	224
6.7.3 Photoelectric switches	223
6.7.4 Limit switches	221
6.7.5 Temperature sensors	220
6.7.6 Tachogenerator	220
6.7.7 Float switches	220
0.7.7 Float Switches	230
6.8 Programmable logic controllers	231
6.8.1 Microprocessor control systems	231
6.8.2 Arithmetic operations	231
6.8.3 Logic operations	231
6.8.4 Decimal system	232
6.8.5 Binary system	232
6.8.6 Bus	233
6.8.7 Advantages of microprocessor systems	233
6.8.8 Systems software	233
6.8.9 Energy management systems	233
6.8.10 Characteristics of PLCs	234
6.8.11 Applications of PLCs	236

6.8.12 Ladder logic diagrams	236
6.8.13 PLC application	237
6.8.14 Entry of ladder diagram via a notebook	
computer	239
6.8.15 PLC system addressing	239
6.9 Three-phase induction motor starters	240
6.9.1 Motor starter circuits	240
6.9.2 Wiring rules and service rule requirements	248
6.10 Three-phase induction motor reversal and	
braking	249
6.10.1 Methods of braking	249
6.10.2 Reversing	251
6.11 Three-phase induction motor speed control	253
6.11.1 Torque-speed relationships	253
6.11.2 Calculating the starting resistance	255
6.11.3 Variable-frequency drives	255
6.11.4 Pole changing	256
6.12 Converting a wiring diagram to a circuit	
diagram	258
6.13 Fault-finding techniques	259
6.13.1 Risk assessment	259
6.13.2 Faults	260
6.13.3 Fault-finding control circuits	261
6.13.4 Fault-finding in the field	261
6.13.5 Half-split method of fault-finding	262
Trial exam	264

Section 7 Wiring systems types, applications and terminations 266

7.1 Conductors and terminations	267
7.1.1 Selecting the conductors	267
7.1.2 Resistivity	267
7.1.3 Conductors	267
7.1.4 Copper conductors	268
7.1.5 Flexible conductors	269
7.1.6 Current-carrying capacity	269
7.1.7 Termination of conductors	269
7.1.8 Terminating cables	270
7.1.9 Joins, taps and splices	273
7.2 Insulation types	276
7.2.1 Insulation colour code (installation wiring)	276
7.2.2 Cross-linked elastomer compounds	276
7.2.3 Insulation abbreviations	276
7.2.4 Types of insulation	277
7.2.5 Choice of insulation	277
7.2.6 Cable terms	277
7.2.7 Cable colour code	280
7.2.8 Flexible cords and cables	280
7.3 Plugs and sockets	282
7.3.1 Single-phase plugs and sockets	282
7.3.2 Pendant-type socket outlet	283

7.3.3 Three-phase plugs and sockets	283
7.3.4 Visual testing	283
7.3.5 Electrical testing	284
7.3.6 Using an appliance tester	284
	005
7.4 wiring systems	285
7.4.1 Wiring system protection	285
7.5 Cables	286
7.5.1 Thermoplastic-insulated cables	286
7.5.2 Thermoplastic-sheathed cables	287
7.6 Trunking	202
7.6.1 TDC and trunking	272
7.6.1 IPS allu tiulikilig	295
7.6.2 Metal trunking	293
7.6.3 In-floor cable trunking	294
7.6.4 PVC trunking	294
7.6.5 Multi-compartment trunking	295
7.6.6 Fixings for trunking	295
7.6.7 Lighting looms	296
7.6.8 Cable tray and ladder	296
7.7 Wiring enclosures	302
7 7 1 AS/NZS 3000.2000 Wiring rules and	
wiring enclosures	302
7 7 2 Upplasticised DVC conduit	302
7.7.3 Conduit runs	303
7.7.4 Suggested fivings of conduits	205
7.7.5 Modium dute conduits	205
7.7.5 Medium-duty conduits	305
7.7.6 Heavy-duty OPVC conduits	306
7.7.7 Trenching for enclosures	306
7.7.8 High-impact conduits	307
7.7.9 Drawing-in cables	308
7.7.10 Acrylonitrile–Butadiene–Styrene (ABS)	
conduit	309
7.7.11 Halogen-free conduit (HFT)	309
7.7.12 UPVC conduits, fittings and joints	310
7.7.13 UPVC conduit installation	311
7.7.14 Expansion joints	312
7.7.15 Conduits in roof spaces	313
7.7.16 Conduits embedded in concrete or wall	
chases	313
7.7.17 Conduits in damp, corrosive and exposed	
environments	314
7.7.18 Conduits in slabs on ground	315
7.7.19 Conduits in suspended slabs	316
7.7.20 Conduits in concrete columns	316
7.7.21 Conduits in hollow-block walls	317
7 7 22 Conduits for future use	317
7 7 23 Corrugated non-metallic conduit	317
7 7 24 Flexible PVC conduit	317
7 7 25 Elevible metallic conduit	318
7 7 26 Transparent conduit	210
7.7.20 Transparent conduit	210
	210
7.8 Setting rigid steel conduit	321
7.8.1 Cutting steel conduit	322
7.8.2 Hand benders	324
7.8.3 Mechanical conduit benders	324

7.8.4 Bending conduit	324
7.8.5 Wiring rules requirements when	
bending conduit	325
7.8.6 Hickey	326
7.8.7 Manufacturing a 90° bend using a	
hand bender	326
7.8.8 Gain	327
7.8.9 Back-to-back 90° bends	327
7.8.10 Making offset bends	328
7.8.11 Three-set saddle bend	330
7.8.12 Four-set saddle bend	331
7.8.13 Parallel offsets	332
7.9 Fire protection cabling and systems	335
7.9.1 Fires involving electrical equipment	336
7.9.2 Fire integrity	336
7.10 Mineral-insulated metal-sheathed cable	338
7.10.1 Installing MIMS	339
7.10.2 MIMS cable fixings	339
7.11 Armoured cable	340
7.11.1 SWA fixings	341
7.11.2 Neutral screened cable	341
7.11.3 Catenary supported cables	341
7.12 Trailing cables	343
7.12.1 Pendants	343
7.13 Communications and data cable	344
7.13.1 Twisted-pair cable	344
7.13.2 Coaxial cable	344
7.13.3 Optical fibre cable	345
Trial exam	346

Section 8Installation of wiring systems348

8.1 Standards, codes and requirements applic	cable
to the installation of wiring systems	349
8.1.1 Cables and methods of mechanical	
protection and support	349
8.1.2 Support and fixings	349
8.1.3 Bending radii for cables	351
8.1.4 Protection when near other services	351
8.1.5 Prohibited cable locations	352
8.2 Use of other installation standards	352
8.2.1 Building codes	352
8.2.2 Heritage buildings and premises	353
8.3 Special situations	353
8.3.1 Electromedical treatment areas	354
8.3.2 Construction site periodic inspection	
and test	356
8.3.3 Relocatable premises	358
8.3.4 Shows and carnivals	361
8.3.5 Marinas	362
8.4 Hazardous areas	367
8.4.1 Fire and explosion	367
8.4.2 Zones	367

8.4.3 Ex certification	368
8.4.4 Ex code	368
8.4.5 Gas grouping	368
8.4.6 Temperature class	369
8.4.7 Standards	370
8.5 Equipment for damp situations	370
8.5.1 Baths, showers and other fixed	
water containers	371
8.5.2 Swimming pools, paddling pools	
and spa pools or tubs	373
8.5.3 Fountains and water features	375
8.5.4 Saunas	376
8.5.5 Refrigeration rooms—cold rooms,	
freezer rooms	377
8.5.6 Locations where general hosing	
down operations are carried out	378
8.6 Aerial cabling	379
8.6.1 Overhead point of supply	379
8.6.2 Flying service	380
8.7 Underground point of supply	380
8.8 Techniques for installing cables and	
wiring systems	384
8.8.1 Application of wiring accessories	384
8.9 Inspecting and testing installed	
and terminated cables	385
8.9.1 Continuity testing	385
8.9.2 Insulation resistance	386
Trial exam	392

Section 9 Electrical installation—

cable selection and coordination	393
9.1 Performance standards	394
9.1.1 Harmful effects	394
9.1.2 Supply characteristics	394
9.1.3 Prospective fault current	395
9.1.4 Protective earth	398
9.1.5 Use of equipment	398
9.1.6 Harmonic currents	398
9.1.7 Maximum demand of an installation	398
9.2 Voltage drop	401
9.2.1 Reduced voltage	402
9.2.2 Determination of voltage drop	403
9.2.3 Sub-main	404
9.3 Creation of separate circuits and	
installation circuit arrangement	408
9.3.1 External influences	408
9.3.2 Protection for safety	409
9.3.3 Protection against injury from mechanical	
movement	410
9.4 Number and types of circuits required	410
9.4.1 Consumer's mains	410
9.4.2 Circuit arrangement in electrical installation	ons 411

9.4.3 Current requirements for final sub-circuits	412
9.4.4 Labelling and circuit schedules	413
9.5 Factors affecting the choice of wiring	
systems	416
9.5.1 External influences	417
9.5.2 External heat sources	418
9.5.3 Solar radiation	418
9.5.4 Cables for different circuits	420
9.6 Current-carrying capacity	422
9.6.1 Coordination between protection	
devices and circuit conductors	423
9.6.2 Using AS/NZS 3000:2007 for current-	
carrying capacity	425
9.6.3 Protection of cables against short-circuits	435
9.6.4 Solar radiation	436
9.7 Selecting cables for consumer's	
mains and sub-mains	438
9.7.1 Domestic installations	438
9.7.2 Domestic demand single phase	439
9.7.3 Domestic demand three phase	440
9.7.4 Maximum demand—multiple occupancy	
residential premises such as villas, units,	
townhouses	442
9.7.5 Multiple domestic demand (three phase)	443
9.7.6 Light industrial demand	444
9.8 Earth-fault-loop impedance	448
9.8.1 Indirect contact	448
9.8.2 Time for disconnection of supply	448
9.8.3 Maximum circuit length	451
9.8.4 Table B5.2.2 calculation method	452
9.8.5 Cable selection based on fault-	
loop impedance	452
9.8.6 Verification of the active and	
protective earthing conductor sizes selected	455
9.8.7 Calculating the impedance of cables	
using the reactance and resistance tables	455
In AS/NZS 3008.1.1	455
9.8.8 Prospective touch voltage	456
9.9 Protective devices for overload and	
fault currents	457
9.9.1 Series rated	457
9.10 Devices for automatic disconnection	
of supply	458
9.10.1 Circuit protection devices	458
9.10.2 Fuses	459
9.10.3 Fuse time–current characteristic	. – -
curves	459
9.10.4 Fault current limiters	460
9.10.5 CITCUIT Dreakers	461
9.10.6 Iripping releases	461
9.11 MINIATURE CIRCUIT DREAKER	464
9.11.1 MCB ume-current characteristic	404
curves	464
9.11.2 CITCUIL Dreaker selection	466

9.12 Selecting devices for isolation	
and switching	467
9.12.1 Isolators	467
9.12.2 Switching device	467
9.13 Tariffs	468
9.13.1 Tariff structures	468
9.13.2 Domestic light and power tariff	469
9.14 Switchboards	469
9.14.1 Types of switchboards	470
9.14.2 Restricted locations for switchboards	471
9.14.3 Checking switchboards in the field	471
9.14.4 Control of sub-mains	472
9.14.5 Control of final sub-circuits	473
9.14.6 Switchboard design and arrangement	
of equipment	473
9.14.7 Mounting of equipment	474
9.14.8 Busbars	476
9.14.9 Metalwork and switchboards	477
9.14.10 Requirements for switchboards	477
9.14.11 Switchboards at shows,	
carnivals and displays	478
9.14.12 Metering	478
Trial exam	484

Section 10 Electrical installations— arrangement, control and protection	487
10.1 Safety principles	488
10.1.1 Requirements for installation design and	
selection of equipment	488
10.1.2 Installation design	488
10.2 Extra-low-voltage SELV and PELV circuits	492
10.2.1 Extra-low voltage	492
10.2.2 Separated extra-low voltage (SELV)	492
10.2.3 Protected extra-low voltage (PELV)	493
10.2.4 Isolated supply	493
10.3 Protection against indirect contact	494
10.3.1 Indirect contact	494
10.3.2 Protection from electric shock	494
10.3.3 Current path	495
10.3.4 Protection	495
10.4 Earthing systems and fundamental	
requirements	496
10.4.1 Earth	496
10.4.2 Multiple earthed neutral (MEN)	496
10.4.3 Main earthing terminal/bar	498
10.4.4 Earthing conductor	499
10.4.5 MEN connection	499
10.4.6 Main earth conductor	500
10.4.7 Main earth resistance	501
10.4.8 Earth electrodes	501
10.4.9 Labelling of the main earthing connection	501

561

570

10.4.10 Earthing resistance of an electrode	502
10.4.11 Protective earthing conductor (PEC)	503
10.4.12 Equipotential bonding	504
10.4.13 Installation faults—equipotential bonding	
conductors (EBCs)	506
10.4.14 Functional earthing	506
10.4.15 Single-wire earth return (SWER) system	506
10.4.16 Socket outlets and lighting points	508
10.5 Earth fault loop	512
10.5.1 Core balance earth leakage (CBEL)	513
10.5.2 RCD characteristics	513
10.5.3 Classification of RCDs	513
10.5.4 Type testing of RCDs	514
10.6 Control of an electrical installation	
and circuits	517
10.6.1 Switch contact ratings	517
10.7 Protection against over-voltage	
and under-voltage	518
10.7.1 Over-voltage	518
10.7.2 Faulty switching operations	518
10.7.3 Methods of over-voltage protection	519
10.7.4 Types of over-voltage arrestors	519
10.7.5 Internal over-voltages	520
10.7.6 Arrestor locations	522
10.7.7 Typical lightning and surge protection	
specifications on an installation	522
10.7.8 Under-voltage	523
10.7.9 Sags	523
10.7.10 Under-voltage protection	523
10.7.11 Over/under-voltage relays	524
10.8 Safety services	525
10.8.1 Evacuation equipment	525
10.8.2 Lifts	527
10.8.3 Special requirements	527
10.9 Fire detection systems	528
10.9.1 Heat detectors	529
10.9.2 Smoke detectors	530
10.9.3 Flame detectors	532
10.9.4 Fire integrity	532
10.10 Security systems	533
10.10.1 Intruder detection systems	533
10.10.2 Access control systems	534
Trial exam	535

Section 11 Electrical apparatus and existing circuits verification and testing

11.1 Electrical safety	537
11.1.1 Safe working practices	537
11.1.2 Isolation and lockout	537
11.1.3 Tools and equipment	537

536

11.2 Legislated regulations	538
11.2.1 Periodic inspection	538
11.3 Fault-finding	539
11.3.1 Tools	539
11.3.2 Half-split method	540
11.3.3 Systematic method	540
11.3.4 Cable fault locators	540
11.4 Testing of electrical installation work	541
11.4.1 Visual inspection	541
11.5 Testing electrical apparatus	
and existing circuits	543
11.5.1 Earth resistance and continuity tests	543
11.5.2 Insulation resistance test	546
11.5.3 Measuring the fault-loop impedance	548
11.5.4 Polarity test	550
11.5.5 Testing for correct circuit connections	552
11.5.6 Verification of RCD operation	554
11.5.7 Portable appliance tester (PAT)	555
11.5.8 General tests	556
11.5.9 Earth electrode resistance testing	556
11.6 Documentation	558
Trial exam	560

Section 12

Introduction to regulations, compliance standards and codes

12.1 Legislated regulations	562
12.1.1 The Electrical Safety Act	562
12.1.2 Electrical safety regulations	562
12.1.3 Ministerial notices	562
12.1.4 Codes of prac	562
12.1.5 Technical standards	562
12.1.6 Responsible person(s) and electrical	
installations	563
12.2 Technical standards and statutory	
requirements	563
12.2.1 National Construction Code	564
12.2.2 Licensing requirements	564
12.2.3 Other electrical qualifications	566
12.2.4 Wiring rules	566
12.3 Purpose, format and content of	
typical job specifications	567
12.3.1 NATSPEC	567
Trial exam	568

Section 13Electrical heating56913.1 Heating and heat energy57013.1.1 Heat as energy transfer570

13.1.2 Modes of heat transfer

13.1.3 Temperature	572
13.1.4 Temperature scale	572
13.1.5 Specific heat capacity	573
13.1.6 Thermal conductivity	574
13.2 Control of heating	575
13.2.1 Manual control	576
13.2.2 Automatic control	576
13.2.3 Simmerstat control (infinite switch)	578
13.2.4 Programmable thermostat control	578
13.2.5 Testing a thermostat	579
13.3 Heating process	580
13.3.1 Instantaneous water heaters	580
13.3.2 Storage water heaters	580
13.3.3 Mains-pressure water heaters	581
13.3.4 Low-pressure water heaters	581
13.3.5 Solar water heaters	582
13.3.6 Calorifiers	584
13.3.7 Heat pump	584
13.3.8 Safety precautions	584
13.3.9 Space heating	585
13.3.10 Electrical heaters	585
13.3.11 Floor heating	586
13.3.12 Reverse-cycle air-conditioning	587
13.3.13 Process heating	587
13.3.14 Resistance heating	588
13.3.15 Induction heating	588
13.3.16 Infrared heating	588
13.3.17 Dielectric heating	589
13.3.18 Arc heating	589
13.3.19 Ultraviolet heating	590
13.3.20 Electron-beam heating	590
13.3.21 Cooking appliances	590
13.3.22 Tariffs	590
13.3.23 Causes of faults in heating equipment	591
13.3.24 Wiring requirements of heating equipment	591
13.3.25 Fault-finding in water heaters	591
Trial exam	59 4

Section 14	
Lighting	595
14.1 Lighting concepts	596
14.1.1 Types of human vision	596
14.1.2 The electromagnetic spectrum	596
14.1.3 Luminous intensity (symbol l)	597
14.1.4 Luminous flux (symbol F and ϕ)	597
14.1.5 Lumen (symbol <i>lm</i>)	597
14.1.6 Illuminance (symbol <i>E</i>)	597
14.1.7 Lux meters	598
14.1.8 Luminous intensity distribution curve	598
14.1.9 Luminance (symbol <i>L</i>)	600
14.1.10 Glare	600
14.1.11 Luminous efficacy	600
14.1.12 The inverse square law	601

14.1.13 Law of reflection	601
14.1.14 Cosine law	602
14.1.15 Colour	602
14.1.16 The colour-rendering index (CRI)	603
14.1.17 Correlated colour temperature (CCT)	603
14.1.18 Visual comfort	603
14.2 Luminaires	605
14.2.1 Efficiency of a luminaire (symbol η_{I})	605
14.2.2 Glare rating	606
14.2.3 Testing for glare discomfort	606
14.2.4 Controlling light angles	607
14.2.5 Fluorescent tube sleeves	608
14.2.6 Reflectors	608
14.2.7 Decorative luminaires	608
14.2.8 Electromagnetic compatibility (EMC)	608
14.2.9 Additional factors	609
14.2.10 Maintenance	609
14.3 Lamp types	609
14.3.1 Incandescent lamps	610
14.3.2 Filaments	610
14.3.3 The glass envelope	611
14.3.4 Krypton and xenon	611
14.3.5 Advantages and disadvantages (air-	
evacuated and argon incandescent lamps)	612
14.3.6 Voltage variation	612
14.3.7 Tungsten halogen	612
14.3.8 HID xenon lamps	613
14.3.9 Fluorescent lamps	614
14.3.10 Compact fluorescent lamps	618
14.3.11 Mercury lamps	618
14.3.12 Mercury blended tungsten lamp	619
14.3.13 Metal halide lamps	619
14.3.14 Sodium vapour lamps	620
14.3.15 Electrodeless lamps	621
14.3.16 Induction lamp	622
14.4 Energy-saving lighting, neon and	
devices	623
14.4.1 Light-emitting diodes (LEDs)	623
14.4.2 LED fluorescent tubes	624
14.4.3 Fibre optics	624
14.4.4 Cold-cathode lamps	625
14.4.5 Cold-cathode fluorescent (CCFL) lamps	625
14.4.6 Controlled plasma (CP) lighting	626
14.4.7 Neon lighting	626
14.4.8 RF interference (RFI)	626
14.4.9 Power factor correction	627
14.4.10 Dimming	627
14.4.11 Daylight sensors	627
14.5 Exit and emergency lighting and	
lighting control	628
14.5.1 Exit signs	629
14.5.2 Testing procedures	629
14.5.3 Emergency lighting	630
14.5.4 Emergency illuminance	630

14.5.5 Electromagnetic compatibility	630
14.5.6 Centrally supplied emergency luminaires	631
14.5.7 Single-point emergency luminaires	631
14.5.8 Maintained emergency luminaire	631
14.5.9 Non-maintained emergency luminaire	631
14.5.10 Sustained emergency luminaire	632
14.5.11 Recommended locations	632
14.5.12 Spacing of emergency luminaires	634
14.5.13 Testing of exit signs and	
emergency luminaires	635
14.5.14 External lighting	635
14.5.15 Fault-finding	636
14.6 General requirements for luminaires	637
14.6.1 Daylight	637
14.6.2 Lighting design	638
14.6.3 Supply of luminaires	639
14.6.4 Installation of luminaires	639
14.6.5 Lighting control	641
Trial exam	645

Section 15	
Batteries	646
15.1 Cells and batteries	647
15.1.1 Basic concepts	647
15.1.2 Electrochemical series	647
15.1.3 Cell energy density	648
15.2 Primary batteries	649
15.2.1 Zinc–carbon cell	649
15.2.2 Zinc chloride battery	650
15.2.3 Zinc–alkaline manganese dioxide cell	650
15.2.4 Lithium–manganese dioxide cell	651
15.2.5 Zinc–air cells	651
15.2.6 Primary cell safety	651
15.3 Secondary or rechargeable cells	652
15.3.1 Open-circuit voltage (emf)	652
15.3.2 Terminal (working) voltage (V)	653
15.3.3 Internal resistance (r _i)	653
15.3.4 State of charge (SOC)	653
15.3.5 Cycle life	653
15.3.6 Depth of discharge (DOD)	654
15.3.7 Discharge rate	654
15.3.8 Ampere-hour capacity	654
15.3.9 Ampere-hour efficiency	654
15.3.10 C-rate	654
15.3.11 Cold cranking amperes (CCA)	654

15.3.12 Reserve capacity	655
15.3.13 Relative density (RD)	655
15.3.14 Watt-hour capacity	655
15.3.15 Watt-hour efficiency	655
15.4 Lead acid battery	656
15.4.1 Gassing	656
15.4.2 Equalisation	656
15.4.3 Acid stratification	657
15.4.4 Safety valve	657
15.4.5 Temperature effects on lead acid batteries	657
15.4.6 Lead acid battery characteristics	657
15.5 Nickel–cadmium battery	658
15.6 Battery configurations	659
15.6.1 Series connection	659
15.6.2 Parallel connection	659
15.6.3 Series–parallel connection	660
15.7 Load testing	660
15.7.1 Charge time	660
15.7.2 Test procedure	661
15.8 Commissioning procedures	661
15.9 Intrinsically safe batteries (ISBs)	662
15.10 Charging methods	663
15.10.1 Constant-current charging	664
15.10.2 Constant-voltage charging	664
15.10.3 Taper charging	664
15.10.4 Pulse charging	665
15.10.5 Standby and backup power	
battery charging	665
15.10.6 Four-step regulator	665
15.10.7 Oniversal chargers	000
15.11 Routine maintenance	666
15.12 Applications (lead acid battery)	667
15.12.1 Starting, lighting and ignition (SLI)	667
15.12.2 Consumer equipment	667
15.13 Safe working practices and batteries	667
15.13.1 Battery acid can cause burns	667
15.13.2 Wear PPE	668
15.13.3 Always shield eyes when working hear	660
Dallelles	600 669
15.13.4 Salety data sheets	000
TS. 14 Maintenance-free batteries	608
iriai exam	669
Answers to the exercises	670
Index	679

PREFACE

The third edition of *Electrotechnology Practice*: A Practical Approach has been written for the student of electrical studies centring on essential knowledge and practical skills for electrotechnology workers. Since its initial release, the text has undergone several version changes to keep it up to date. With this third edition the text has been revamped, reorganised and updated to meet the Electrotechnology Training Package **UEE11**. This text is a practical response to the changing needs of the electrotechnology industry and presents a broad-based expression of knowledge essential for workplace participation. It is also a practical reference text for anyone interested in aspects of electrical practice. In order to convey the real-world aspects of electrotechnology practice, particular attention has been given to diagrams and illustrations. The text utilises graphical ways of working with ideas and presenting information-to this purpose over 500 illustrations have been employed.

Individuals recognise and process information in very different ways and attain understanding at different rates. This text addresses the uniqueness of individual learning processes. The text is student centred and is suited to flexible delivery methodsself-paced learning, in-the-classroom delivery or as an on-the-job reference text. The aim of this text is to provide a sound understanding of electrotechnology practice. The content of this text is aligned with essential capabilities from the Electrotechnology Training Package **UEE11**, specifically the Certificate III in Electrotechnology Electrician.

I would like to thank Andrew Brock from Pearson Australia (Acquisitions Editor) for his work, support and advice. I would also like to thank the publishing team, especially Bernadette Chang (Project Editor), Jennifer Coombs (Copy Editor) and Michael Wyatt (Proofreader), for their professional and technical expertise.

I would also like to express my very great appreciation to Steven Hanssen (TAFE NSW, Northern Sydney Institute) for his valuable and constructive suggestions during the development of this third edition. His willingness to give his time and professional knowledge so generously has been very much appreciated.

Jeffery Hampson (Cert IV in Training and Assessment, Dip T (TAFE) BEd)

ACKNOWLEDGEMENTS

The author wishes to thank the many lecturers and industry experts who gave valuable assistance in the preparation of this new edition of *Electrotechnology Practice*. Their helpful suggestions, concerning many aspects of the technical content of this book, have been drawn from broad experience in the electrical trades.

These lecturers and industry experts include:

TAFE Qld (Skills Tech Australia)
TAFE NSW (Northern Sydney Institute)
Challenger Institute of Technology
TAFE NSW (Riverina Institute)
RMIT
Goulburn Ovens Institute of TAFE
TAFE SA
Tec-NQ
TAFE SA
TAFE Qld (Skills Tech Australia)
Advanced Training International
TAFE Qld (Skills Tech Australia)
E-Oz Energy Skills Australia
Sunraysia Institute of TAFE
Training Prospects
College of Electrical Training

Work health and safety ---

 This section provides electrotechnology workers with knowledge and skills about work health and safety fundamentals.
 Electrotechnology workers will gain an overview of work health and safety knowledge and skills that will allow them to implement safe procedures for working in the electrotechnology industry.

SECTION OBJECTIVES

Work health and safety fundamentals

- State the primary principles of work health and safety
- List the role and responsibilities of employers and workers
- State the functions of health and safety committees
- List the powers of workplace health and safety inspectors
- Describe the principles of risk management
- Define 'housekeeping'
- Explain why personal protective equipment is used

Work environment

- Describe possible hazards at a worksite
- Recognise various safety signs
- Define an 'emergency situation'
- Identify a range of fire extinguishers suitable for a specific type of fire

Work environment safety signs

- State the aim of work environment safety signs
- Recognise the meaning of various safety signs

Fires

- State the four elements necessary for fire to exist
- Distinguish fire extinguishers from each other by their colour scheme

Workplace emergencies

Recognise a workplace emergency situation

Manual handling

Define 'manual handling'

- Describe correct lifting procedures
- List typical manual handling injuries

Chemicals in the workplace

- Recognise chemicals as hazardous substances
- Identify and understand a material safety data sheet

ADDITIONAL

www.pearson.com vet/hampson

Material safety data sheets

- Recognise a material safety data sheet (MSDS)
- Locate various types of information on an MSDS

Storage procedures

Understand the detail required of a chemical substance register

Working at heights

Identify hazards, equipment and precautions when working at heights

Confined spaces

Define a 'confined space' and its potentials hazards

Physical and psychological hazards

Evaluate common hazards in the workplace

Working with electricity

Discuss the effects of electric shock and describe precautions to minimise those effects

Protective measures

Recognise the various protective devices intended primarily for the protection of conductors and equipment

Common electrical hazards

State the three categories of common electrical hazards

Rescue from a live situation

Provide the requirements for a low-voltage rescue kit when working on or near live electrical equipment

1.1 Work health and safety fundamentals

In force across Australia is the national harmonisation law which is a significant reform to WH&S legislation. This reform is reflected in new federal Acts called The Work, Health and Safety Acts (WH&S Acts). This legislation came into effect on 1 January 2012.

Previously, reference had to be made to the relevant state or territory legislation referring to WH&S in which the electrical worker resides. Today each of the state and territory WH&S laws are replaced by national laws based on the WH&S Act. This approach to WH&S provides consistency for workers (same work, health and safety protection and standards) anywhere they work across Australia. In Australia WH&S is watched over by Safe Work Australia.

Important changes introduced are:

- a broader definition of the term 'worker'
- clarification of the term 'due diligence'
- union rights
- worker consultation requirements
- incident notification
- role of inspectors and regulators.

All prudent electrical workers should read the WH&S legislation, which must be available to them in the workplace.

In general, work health (which includes psychological health as well as physical health) and safety provides a broad framework incorporating legislation (which codifies the duties of care that are owed under common law), policies, procedures, obligations and practical means that aim to protect the safety, health and welfare of all persons within a

workplace. A workplace is any place where work is being performed. The harmonised principles of the WH&S Acts are as follows:

Understand what is meant by the term 'Emergency

Determine a casualty's level of consciousness via

Understand the principle of 'duty of care'

gentle touching and loud talking

Explain the meaning of 'COWS'

Life support

Explain the meaning of first aid

Develop a priority action plan

procedure at an accident'

Legal and ethical issues

First aid information (CPR)

- 1. All persons in a workplace must be given the highest level of health and safety protection that is sensibly feasible.
- 2. Those who manage or control work activities that give rise, or may give rise, to risks to health or safety are responsible for removing or minimising health and safety risks, so far as is sensibly feasible.
- 3. Employers and self-employed people should develop a 'hands-on' approach and take sensible workable measures to ensure health and safety in their business activities.
- 4. Employers and workers should exchange information about workplace risks to health or safety and actions that can be taken to eliminate or reduce those risks.
- 5. Employees are entitled, and should be encouraged, to be represented on health and safety issues.

The objectives of WH&S are structured around the following eight core values:

- 1. to secure and promote the health, safety and welfare of people at work
- 2. to protect all people at a place of work against risks to health or safety arising out of the activities of persons at work
- 3. to promote a safe and healthy work environment for all persons at a workplace to protect them from injury and illness
- to provide for consultation and cooperation between employers and employees in achieving the principles of the relevant state or territory WH&S Act or regulation

- 5. to ensure that risks to health and safety at a workplace are identified, assessed and eliminated or controlled
- 6. to provide a legislative framework that enables a living standard of WH&S to take account of future changes in technology and work practices
- 7. to deal with the impact of particular classes or types of dangerous goods and plant at, and beyond, places of work
- 8. to develop and promote community awareness of WH&S issues.

Every worker in Australia and New Zealand has a right to healthy and safe work and to a work environment that enables them to live a socially and economically productive life.

1.1.1 Responsibilities, rights and obligations

The WH&S legislation in Australia and New Zealand places an absolute duty on employers and controllers of workplaces (including directors and managers) to provide a safe and healthy workplace for employees and visitors to the workplace. The various Acts impose clear obligations on all persons to ensure safe work environments.

Employers are to provide work environments that ensure the health and safety of workers. Employers must also maintain the various classes or types of dangerous goods and plant and systems of work under their control without risking the health and safety of any person.

Workers have obligations not to put others at risk and to obey the reasonable instructions of their employer in relation to WH&S.

Persons other than employers and workers (visitors or unwelcome persons) must not put others and workplaces at risk and must obey the WH&S instructions specific to the workplace location they have entered.

1.1.2 Health and safety committees

Health and safety committees are set up in workplaces to help resolve health, safety and welfare issues that arise in the workplace. The committee is a representative group of the employer and workers that meets in a cooperative way to improve systems which assist proposed changes to the workplace, workplace policies, practices or procedures that could affect the health, safety or welfare of any person in the workplace. Health and safety committees should:

- develop safe systems of work and safety procedures
- analyse accidents and causes of notifiable occupational diseases, and make recommendations to prevent recurrences
- review risk assessments
- examine safety audit reports
- consider reports submitted by safety representatives
- monitor the effectiveness of health and safety training
- monitor and review the adequacy of health and safety communication within the workplace.

1.1.3 Safety inspectors

A workplace health and safety inspector may enter any workplace to monitor its compliance with the WH&S Act and to exercise their powers while they are in that workplace. Usually the inspector will be visiting to undertake a health and safety inspection. However, they could also visit after an accident that may have been caused by work activities. After entering the workplace the inspector has the power to:

- search any part of the workplace
- carry out inquiries, examinations, surveys and investigations, including taking measurements, photographs and samples with respect to the degree of risk at the workplace or the standards of health and safety existing at a workplace
- inspect and copy documents
- make inquiries into the circumstances and probable causes of workplace incidents
- take any person, equipment or materials into the workplace to assist in the exercising of a power
- require any person in the workplace to give reasonable help
- require a person to produce specific documents
- issue improvement or prohibition notices
- seize evidence of a WH&S offence
- seize anything dangerous or otherwise used to commit a WH&S offence.

Note that it is an offence to obstruct, threaten or interfere with a WH&S inspector who is exercising their powers under the legislation.

1.1.4 Safety observers

Safety observers must receive specific instructions in their duties from the licensed electrical worker or

workers on potential risks associated with the work to be performed. Safety observers must:

- wear the necessary personal protective equipment required by personnel involved with the electrical work activities
- constantly observe the safety procedures that are carried out by electrical personnel working in a potentially hazardous situation
- be familiar with the location of all isolation points and how to operate them for the work being performed
- provide prompt warnings when necessary to prevent electrical workers coming into direct contact with exposed electrical parts
- provide help in the case of emergency.

Safety observers must also:

- have demonstrated ability in isolation techniques
- be proficient in rescue procedures and tools for extracting persons from live low-voltage circuits and equipment
- be skilled in resuscitation techniques
- render immediate first aid assistance in the event of an accident.

A safety observer is required for all instances of live work. For example, a licensed electrical worker has to perform the following tasks:

- fault finding on low-voltage electrical installations or equipment that is energised
- testing of low-voltage electrical equipment that introduces an energy source (voltage or current), that is, bench testing equipment.

1.1.5 Housekeeping

Housekeeping is not just cleanliness; it is a significant factor in creating a safe, healthy workplace for workers. The development of a good housekeeping culture in a workplace is a team effort and should be the desire of every worker. Best-practice procedures make housekeeping a standard part of working. Good housekeeping also raises awareness and highlights the importance of sustainability, environmental responsibility and hygiene concerns.

Where a workplace has been allowed to become cluttered and polluted, poor work practice procedures and frequent accidents often result. Good housekeeping means that:

- work areas are free from rubbish and obstructions
- surfaces are safe and suitable
- surfaces are free from slip/trip hazards
- appropriate waste bins are available

- stock/material is stored safely
- aisles are unobstructed and clearly defined with adequate lighting. There should be good vision at corners and the aisles must be wide enough for the processes carried out.

Remember: workplace housekeeping is a task of both employers and workers, for the benefit of both. Good industrial housekeeping creates a working environment in which workers can do their job correctly, professionally and in safety.

1.1.6 Personal protective equipment

Personal protective equipment (PPE) refers to garments, equipment or barrier substances designed to be worn by a person to protect them from exposure to risks of injury or illness. Different types of PPE may be used depending on the type of hazard. Note that all PPE must be approved by Australian standards.

PPE for electrical work

Clothing

Flame-resistant clothing (100% cotton clothing) that covers the whole body (neck to wrists and ankles) must be worn by all electrical workers involved with de-energised electrical work activities.

Flame-retardant clothing that covers the whole body (neck to wrists and ankles) must be worn by electrical workers involved with live work activities.

Insulating gloves

Insulated gloves for working on low-voltage equipment are to be rated to the highest voltage expected when performing the task. The gloves must comply with AS 2225:1994 *Insulating gloves for electrical purposes*.

Safety footwear

Safety shoes/boots must comply with the requirements of AS/NZS 210.2:2000 Occupational protective footwear—Requirements and test methods.

The shoes/boots selected should have minimal synthetic material in their construction and must have a full leather upper.

When in service the shoes/boots must be in good condition and are not to have any exposed metal such as steel toe-caps.

Face shields

Face shields are to cover the full face and have no exposed metal parts and have an electrical rating suitable for the task being performed.

All PPE must be checked regularly for condition, cleanliness and use-by dates, and the storage of PPE must be appropriate. If electrical workers do not use the correct PPE they will continue to be involved in accidents and they will suffer injuries.

TOPIC REVIEW

- In general, occupational health provides a broad framework incorporating legislation, policies, procedures, obligations and practical means that aim to protect the safety, health and welfare of all persons within a workplace.
- The objectives of WH&S in Australia are structured around eight core values.
- The WH&S legislation in Australia and New Zealand places an absolute duty on employers and controllers of workplaces to provide a safe and healthy workplace for employees and visitors to the workplace.
- Health and safety committees are set up in workplaces to help resolve health, safety and welfare issues that arise in the workplace.
- A workplace health and safety inspector may enter any workplace and exercise their powers while they are in a workplace.
- Safety observers must receive specific instructions in their duties from the licensed electrical worker or workers on potential risks associated with the work to be performed.
- Housekeeping is not just cleanliness; it is a significant factor in creating a safe, healthy workplace for workers.
- Personal protective equipment (PPE) refers to garments, equipment or barrier substances designed to be worn by a person to protect them from exposure to risks of injury or illness.

REVIEW QUESTIONS

- 1. State two common principles that unite all the state and territory individual WH&S Acts.
- 2. State two core values that the objectives of WH&S in the different states and territories of Australia are structured around.

- Name one obligation that workers have to others with respect to WH&S.
- 4. State the purpose of a health and safety committee.
- 5. Name three powers of a workplace health and safety inspector.
- 6. Provide three responsibilities that a safety observer must demonstrate.
- 7. What does good housekeeping mean?
- 8. What type of clothing must be worn when performing de-energised electrical work activities?
- **9.** State the requirements for safety shoes/boots when in service.

1.2 Work environment

1.2.1 Worksite

A worksite means the place of employment, base of operation or location of workers. It includes all of the employer's buildings or facilities located within the same building and their parking facilities.

1.2.2 Induction

Induction is a legislative requirement. The Work, Health and Safety Act states that a manager has an obligation to protect the health and safety of workers and others by ensuring that they are not exposed to risks to their health and safety arising from their employment and that they have enough information, training and supervision to stay safe.

Induction is imparting information to a prospective staff member at various points during the familiarisation process for a work program, for example at an interview and at the local workplace. All new staff should be given a general orientation program which includes providing information which is specific to the local workplace and all relevant safety information.

Induction is normally carried out by a nominated staff member who provides information about processes and activities regarding the work area including health and safety matters. All new staff must be informed about the hazards and the possible risks and know how to avoid or minimise the risks.

1.2.3 The work environment

In today's changing times safe premises, buildings and security address not only natural disasters but also crime, violence in the workplace and acts of terrorism.

Security means the protection of the premises, the employees working there, visitors and assets.

The most common threat in the work environment is workplace violence. Workplace violence includes cases of unhappy, angry workers causing harm to a building, its assets or other workers, and includes domestic issues that carry over into the workplace. This can have fatal consequences if these workers are not identified and counselled before the situation escalates.

Criminal issues include stealing and sabotage to buildings, assets or documents (paper or data). Persons engaged in these activities are usually disgruntled workers, opportunists or hackers. Our era has seen an increase in terrorist-related violence. Workplaces now have the potential to be used as weapons of mass destruction.

When developing a practical plan of action, the workplace environment must be examined from several viewpoints: operations, physical security and valid data-collecting processes. A practical plan of action theoretically leads to safer environments for workers and the surrounding community.

1.2.4 Standard work procedure

Standard work procedure means implementing specific, efficient plans of action for each task or process undertaken in a workplace. It starts with identifying the generally accepted safe and sound way to perform a particular task, then developing methods and procedures. These standard procedures become an effective baseline against which improvement actions are measured.

Standard work procedures enable each worker to learn and follow best practices that help them complete each task or process to a high level of efficiency with safety.

Observation and analysis of each process enables the identification of workplace activities that are not safe or are inefficient and that must therefore be eliminated or improved. This can be anything from a worker engaged in excessive lifting to having to work live. The process is then documented as a carefully planned step-by-step sequence of actions, applied and monitored to ensure it is implemented as planned. A flow chart for the establishment of standard work procedures is illustrated in Figure 1.1.

1.2.5 Hazards at the worksite

A hazard can be work practices, procedures or everything that has the potential to harm the

health or safety of a person. Risk is a measure of the probability of a specific harmful effect in particular circumstances. It is important to distinguish between hazard and risk. Worksite hazards occur:

- in the work environment
- as a result of the use of machinery, tools and materials
- as a result of unsuitable work systems and procedures.

Hazards encountered at a worksite can be classified into five broad areas:

- 1. *physical:* noise, radiation, light, vibration, temperature, humidity, ergonomic (movement)
- 2. *chemical:* poisons, dusts, lead, solvents, resins, glues, fluxes
- 3. *biological:* viruses, plants, parasites, vermin, insects, mites, wood and other plant material

(allergies), infections (tuberculosis), viruses (from needlestick injuries)

- 4. *mechanical/electrical:* slips, trips and falls, tools, electrical equipment
- 5. *psychological:* fatigue, violence, bullying, stress.

Worksite risk assessments and inspections are key activities in the prevention of accidents occurring from worksite hazards. Risk assessments and inspections:

- identify existing and potential hazards
- increase worker awareness, leading to the prevention of worksite accidents and illnesses
- ensure compliance with standards and regulations.

Existing or potential hazards identified by worksite risk assessments and inspections can be prevented or controlled by the following six levels of control measures, in order of priority.

- 1. Elimination—stop whatever is causing the hazard.
- 2. Substitution—use a lower hazard alternative.
- 3. Isolation—separate use from the rest of the workplace.
- 4. Engineering controls—install equipment that will reduce exposure or risk.
- 5. Safe work practices—change the way people work.
- 6. Personal protective equipment (PPE)—gloves, goggles, ear plugs and respirators, for example, can reduce worker contact and exposure to the hazard. PPE is always the last resort, but in some worksite situations may be the most practicable.

When assessing workplace hazards and risks always consider and document the probability of an event, length of exposure to the hazard or risk and the consequences.

TOPIC REVIEW

- A worksite means the place of employment, base of operation or location of workers.
- Induction is imparting information to a prospective staff member at various points during the familiarisation process for a work program, for example at an interview and at the local workplace.
- The most common threat in the work environment is workplace violence.

- When developing a practical plan of action, the workplace environment must be examined from several viewpoints: operations, physical security and valid data-collecting processes.
- Standard work means implementing specific, efficient plans of action for each task or process undertaken in a workplace.
- A hazard is something that has the potential to cause harm.
- Hazards that can be encountered at a worksite can be classified into physical, chemical, biological, mechanical/electrical and psychological areas.
- Worksite risk assessments and inspections are key activities in the prevention of accidents occurring as a result of worksite hazards.

<u>REVIEW</u> QUESTIONS

- **1.** Give the meaning of the term 'worksite'.
- 2. Who normally carries out induction?
- 3. What is the most common threat in the work environment?
- 4. What should a practical plan of action theoretically lead to?
- 5. Define 'standard work'.
- 6. How is the identification of workplace activities that are not safe or are inefficient carried out?
- 7. What is the meaning of the term 'risk'?
- 8. What is the meaning of the term 'hazard'?
- State the six levels of control measures with respect to existing or potential hazards identified by worksite risk assessments and inspections.

1.3 Work environment safety signs

The aim of work environment safety signs is to regulate and control safety-related behaviour, to warn workers and members of the general public of health and safety hazards and to provide emergency information, including fire protection information. The Australian standard setting out requirements for the design and use of safety signs is AS 1319:1994 *Safety signs for the occupational environment.* The standard specifies several sign classifications and layouts as follows.

1.3.1 Prohibition signs

Prohibition signs as illustrated in Figure 1.2 indicate that an action or activity is not permitted. Their designated symbolic shape is a red circle with a diagonal red slash through it. This is usually superimposed over a black pictograph, for example a person, to indicate what specific activity is referred to. The background is white and any text is black.

Figure 1.2 **Prohibition sign**

1.3.2 Mandatory signs

Mandatory signs as illustrated in Figure 1.3 indicate that an instruction must be carried out. Their symbolic shape is a blue circle. A white pictograph such as hearing protection is superimposed on the blue circle to indicate the activity that is mandatory. The background is white and any text is black.

1.3.3 Restriction signs

Restriction signs as illustrated in Figure 1.4 place a numerical or other defined limit on an activity or use of a facility. Their symbolic shape is a red circle, but without the diagonal slash as in prohibition signs. This would also have a black pictograph or other legend inside the circle, a white background and any text in black.

1.3.4 Danger signs

Danger signs as illustrated in Figure 1.5 warn of a particular hazard or hazardous

Figure 1.3 Mandatory sign hearing protection must be worn

condition that is likely to be life threatening. Their symbolic shape is the word DANGER in white on a red oval, which is surrounded by a black rectangle. This usually forms a heading for a white background on the sign. Alternatively, it may occupy the left side of a horizontal sign. Any text is in black.

1.3.5 Warning signs

Warning signs as illustrated in Figure 1.6 warn of a hazard or hazardous condition that is not likely to be life threatening. Their symbolic shape is a black triangular outline. A black pictograph usually appears inside the triangle to indicate the specific detail, for example an information symbol. The sign background is yellow with any text in black.

1.3.6 Emergency information signs

Emergency information signs (see Figure 1.7) indicate the location of, or directions to, emergency-related facilities such as exits, safety equipment or first aid facilities. The background is green and any text or pictograph is white.

1.3.7 Fire signs

Fire signs as illustrated in Figure 1.8 advise the location of fire alarms and fire-fighting equipment. The

background is red and any text or pictograph is white.

The type of work environment safety sign used should be suitable for the intended application and workers should be informed of its purpose.

Work environment safety signs should be located where the message is legible, and where they attract the attention of, and

BEFORE WORKING ON EQUIPMENT Figure 1.6 Warning sign

are clearly visible to, all workers by being placed at eye height. Signs should be located against a contrasting background so they are more obvious, thereby reducing the risk of them becoming obscured by stacked materials or other visual obstructions.

For maximum effectiveness, work environment safety signs should be maintained in good condition, kept clean and well illuminated.

TOPIC REVIEW

- The aim of work environment safety signs is to regulate and control safety-related behaviour, to warn workers and members of the general public of health and safety hazards and to provide emergency information, including fire protection information.
- The type of work environment safety sign used should be suitable for the intended application, and workers should be informed of its purpose.

REVIEW QUESTIONS

1. What is a mandatory safety sign?

2. Describe a danger sign.

1.4 Fires

Fire protection in the workplace requires appropriate means of extinguishing local fires in all locations where workers are employed. These locations should have adequate safety notices to instruct, warn and guide workers about possible fires. Portable fire extinguishers apply an extinguishing medium that cools burning fuel, displaces or eliminates oxygen or stops the chemical reaction so a fire cannot continue to burn. When the safety pin is removed and the handle of an extinguisher is activated, a canister of high-pressure gas is triggered, forcing the extinguishing medium through a tube and out the nozzle. For fire to exist, four elements must be present at the same time:

- 1. some sort of fuel or combustible material
- 2. oxygen to sustain combustion

- 3. heat to raise the combustible material to its ignition temperature
- 4. a chemical reaction.

Not all fire extinguishers can be used effectively on all types of fires. Some fires involve combustibles such as paper, some involve liquids and others involve energised electrical equipment. Different types of fire extinguishers are distinguished from each other by their colour scheme and are designed to extinguish different classes of fire. Fire extinguishers empty quickly, anywhere from 8 seconds to 60 seconds. Fire extinguishers (see Figure 1.9) are classified by the type of fire they best extinguish.

Water is one of the most commonly used extinguishing agents for class A fires. Another extinguisher used for class A fires is the airpressurised water (APW) extinguisher. An APW can be recognised by its large silver container. APWs are two-thirds filled with water then pressurised with air. APWs extinguish fire by cooling the surface of the fuel to remove the heat element of the fire.

Wet chemical extinguishers utilise an aqueous solution discharged in a fine spray to the surface of class F fires (see Figure 1.9). Wet chemical extinguishers extinguish fire by smothering the

	WATER AIR-PRESSURISED WATER	WET CHEMICAL	FOAM	DRY CHEMICAL POWDER	CARBON DIOXIDE (CO ₂)
FIRE CLASS					
A Ordinary combustibles (wood, paper, plastics, etc.)	YES	YES	YES	YES	NO
B Flammable combustible liquids	NO	NO	YES	YES	YES
C Flammable gases	NO	NO	NO	YES	NO
E Fire involving energised electrical equipment	NO	NO	NO	YES	YES
F Fire involving cooking oils and fats	NO	YES	YES	YES	NO

Figure 1.9 | Fire extinguishers and classifications

surface of the fuel to separate the oxygen element of the fire from the fuel. The wet chemical also cools the surface of the fuel to remove the heat element of the fire.

Foam extinguishers contain a solution of aqueous film-forming-foam (AFFF) concentrate and water. When the extinguisher is operated, the solution is discharged through the nozzle that is designed to excite air to produce a foam discharge. Foam extinguishers extinguish fire by smothering the surface of the fuel to remove the oxygen element of the fire. The foam also limits the release of flammable vapours to prevent any re-ignition of the fire.

Dry chemical extinguishers coat the fuel with a thin layer of fire-retardant powder. Dry chemical extinguishers extinguish fire by smothering the surface of the fuel to separate the oxygen element of the fire from the fuel. The powder also works to disrupt the chemical reaction.

Carbon dioxide (CO_2) is a non-flammable gas placed under extreme pressure within a CO_2 extinguisher. CO_2 extinguishers extinguish fire by displacing the oxygen element of the fire. Because of its high pressure, pieces of dry ice are also emitted from the extinguisher which has a cooling effect on the fire.

There is another fire class, class D, for combustible metals. Some ships are made with magnesium steel to make the ship lighter and therefore faster in the water. However, if enough heat is generated the metal will burn.

Fire extinguishers should be serviced every six months. They are checked to make sure they are charged and nothing is missing on them. You can check the yellow metal tag on an extinguisher to see when it was last tested. Written on the front of each type of fire extinguisher are instructions for its correct use. To use a fire extinguisher properly all you have to remember is PASS.

Fire blankets as illustrated in Figure 1.10 extinguish fire by smothering the surface of the fuel to remove the oxygen element of the fire. They can be used for small class A and small cooking fat fires but are mainly used to wrap around workers if their clothes catch alight. Fire blankets are either a flameretardant-treated woollen material or a combined Proban[®] cotton and Aramid (nylon fibre) flameretardant textile.

TOPIC REVIEW

- Fire protection in the workplace requires appropriate means of extinguishing local fires in all locations where workers are employed.
- Not all fire extinguishers can be used effectively on all types of fires.
- Different types of fire extinguishers are distinguished from each other by their colour scheme and are designed to fight different classes of fire.
- Fire blankets extinguish fire by smothering the surface of the fuel to remove the oxygen element of the fire.

REVIEW QUESTIONS

- 1. State the purpose of portable fire extinguishers.
- 2. Name the four elements that must be present at the same time for a fire to exist.
- Describe how a dry chemical extinguisher controls a fire.
- 4. What does PASS mean when referring to fire extinguishers?
- 5. How is a fire blanket used?

1.5 Workplace emergencies

A workplace emergency is a situation that threatens workers or the public, disrupts or shuts down workplace operations or causes physical or environmental damage. Emergencies may be naturally caused or manmade and can include the following:

- cyclones
- floods
- fires
- explosions
- chemical spills
- toxic gas releases
- workplace violence.

The most effective way to deal with a workplace emergency is to prepare to respond to a possible emergency before it happens. Putting together a broad emergency action plan that deals with workplace issues specific to a worksite is not difficult. It includes involving both management and workers using brainstorming techniques to determine potential emergencies that could occur at the workplace. This technique helps to develop a workplace emergency action plan. An emergency action plan must include the following:

- 1. A method for reporting fires and other emergencies.
- 2. An evacuation policy and procedure.
- 3. Emergency escape procedures and escape route path. Include floor plans, workplace site maps and location of designated safe areas to account for all employees after an evacuation.
- 4. The names and emergency phone numbers of designated persons who have duties and responsibilities under the emergency plan.
- 5. Actions for designated workers who stay to shut down important machinery and equipment operations, operate fire extinguishers or perform other essential services that cannot be shut down immediately for every emergency before evacuating.
- 6. Rescue and medical duties for workers designated to perform them.

TOPIC REVIEW

A workplace emergency is a situation that threatens workers or the public, disrupts or shuts down workplace operations or causes physical or environmental damage.

REVIEW EXERCISE

1. What is a workplace emergency?

1.6 Manual handling

The term 'manual handling' is used to describe any activity requiring the use of the hands or bodily force applied by a person to lift, lower, push, pull, heave, carry, move, support or restrain an object, person or animal. Manual handling also covers activities which require the use of bodily force such as operating power tools or crow bars and repetitive movements such as using a screwdriver or keyboard activity.

1.6.1 Manual handling injuries

Injuries most frequently associated with manual handling include:

- Back injuries—spine, joints, ligaments, muscles and intervertebral discs
- Fractures—to the fingers, hand, feet and toes
- Lacerations—to the hands and fingers
- Crush injuries—to the fingers
- Sprains—to the wrist, thumb and ankle
- Strains—to the back, shoulder, arms, hands and fingers
- Contusion—bruising to various parts of the body
- Hernia—an opening in the wall of a muscle, tissue or membrane that normally holds an organ in place.

Every muscular effort however slight involves the spine. When you lift, your back is put under stress, especially the lower spine. The lower spine is very mobile and is able to bend forwards, sideways and backwards but is capable of only very little rotation. Twisting or jerking while lifting and carrying can injure the small facet joints (stabilising joints located between and behind adjacent vertebrae) which guide movement of the back.

Intervertebral discs, which separate the vertebrae (spinal bones), and the ligaments, which hold the vertebrae together, are also at risk. The vertebrae of the spinal column run down the back as shown in Figure 1.11 on page 12, connecting the skull to the pelvis. These bones protect nerves that come out of the brain and travel down the spinal cavity and out to the entire body.

The intervertebral discs are composed of soft gelatinous substances which provide spinal column cushioning. The discs are also surrounded by a strong fibrous ring and with repeated incorrect lifting the discs, fibrous ring or its supporting ligaments may tear or rupture.

In general, back injuries are caused by wear and tear and damage to the joints, ligaments, muscles and intervertebral discs which occur during day-to-day